SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 20(1), 5-12 (JANUARY 1990)

Fast Allocation and Deallocation of Memory
Based on Object Lifetimes

DAVID R. HANSON
Department of Computer Science, Princeton University, Princeton, N 08544, U.S.A.

SUMMARY

Dynamic storage-management algorithms are based either on object sizes or object lifetimes.
Stack allocation, which is based on object lifetimes, is the most efficient algorithm, but severely
restricts object lifetimes and creation times. Other algorithms based on object sizes, such as
first fit and related algorithms, permit arbitrary lifetimes but cost more. More efficient variations
capitalize on application-specific characteristics. Quick fit, for example, is more efficient when
there are only a few object sizes. This paper describes a simple algorithm that is very efficient
when there are few object lifetimes. In terms of instructions executed per byte allocated, the
algorithm is almost half the cost of quick fit and less than twice the cost of stack allocation.
Space for all objects with the same lifetime is allocated from a list of large arenas, and the
entire list is deallocated at once. An implementation in ANSI C is included.

KEY WORDS Storage management First fit Quick fit

INTRODUCTION

Most storage-management schemes in which storage is allocated and deallocated
explicitly are based on the distribution of the sizes of objects. Examples of such schemes
are buddy systems, first-fit algorithms' and quick-fit.> Systems in which storage is
deallocated implicitly rely on garbage collection or reference counts to identify inaccess-
ible storage that can be reused.? In these systems, as in systems that use stack allocation,
the storage-management scheme is based on the lifetimes of objects.

Many storage-management algorithms are designed to reduce the time overhead.
Space overhead may also be a concern, but reducing time overhead is often the first
priority. Quick fit*> is an example of a design that attempts to reduce time overhead.
In many applications, most objects are of only a few different sizes and quick fit
capitalizes on this observation. There are n free lists; freelistlk] heads a linked list of
free k-byte objects. Rare requests for m > n bytes are handled by an alternative scheme,
such as first-fit from a list of free blocks of sizes greater than n. This alternative scheme
is also used when freelist[k] is empty.

Quick fit is fast because most allocations can be done in a few lines of in-line code.
For example, k bytes can be allocated by the following code written in ANSI C:*

if (k <= n && (p = freelist[k]))
freelist[k] = p->link;
else
P = allocate(k);

0038-0644/90/010005-08%05.00 Received 22 November 1988
© 1990 by John Wiley & Sons, Ltd. Revised 1 Fune 1989

6 D. R. HANSON

The pointer p is assigned the first free block on freelistlk] if there is one, and the free
list pointer is advanced. Otherwise, allocate is called to perform an alternative allocation
scheme, such as first fit, or to request more memory from the operating syvstem.
Deallocation using quick fit is equally efficient: deallocating k bytes pointed to by p
is done by the following code:
if (k <=mn) {
p—>link = freelist[k]l;
freelist[k] = p;

T else
deallocate(p, k);

If the size of the object pointed to by p is less than or equal to n bytes, the object is
added to the front of the appropriate free list. Otherwise, deallocate, which implements
an alternative deallocation scheme, is called. If k is a constant known to be less than
or equal to n, the test k <= n can be omitted in both the allocation and deallocation
fragments.

Quick fit and similar algorithms require explicit deallocation, and the cost of explicit
deallocation can be significant. In some applications, most deallocations occur at the
same time. Window systems are an example. Spaces for objects that implement a
window, such as scroll bars, buttons, etc., are allocated when the window is created
and deallocated when the window is destroyed.

Compilers are another example. In compilers for most traditional languages, symbol
table entries are allocated in response to declarations, and intermediate representation
structures are allocated in response to statements. Both are often deallocated at the end
of each compound statement or each procedure. In Icc, a recently completed compiler
for ANSI C, symbol-table entries for local variables and nodes for trees and dags are
allocated in just this fashion and deallocated at the end of each function. Deallocation
is deferred to the ends of functions so that the code generator can process an entire
function, which leads to better code.

In these examples and in similar systems, storage-management algorithms that are
based on object lifetimes instead of object sizes would be more efficient. Indeed, stack
allocation would be most efficient, but can be used only if all object lifetimes are nested
properly, which is generally not the case in window systems, compilers and many other
applications. The remainder of this paper describes a simple storage-management
scheme that is based on object lifetimes. This scheme 1s designed to be used in
applications such as those described above; its use in lcc, for example, reduced storage
management overhead significantly as detailed below.

STORAGE ORGANIZATION

Objects are grouped according to lifetimes, not sizes. Although there can be as many
groups as necessary, a few suffice in practice. For example, lcc uses only two groups.

Objects with the same lifetime 1 are allocated from a large arena. An arena is defined
by the C structure

struct arena { /* storage allocation arena: */
struct arena *next; /% link to next arena */
char #*1limit; /#* address of one past end of arena */
char *avail; /* next available location */

FAST ALLOCATION AND DEALLOCATION OF MEMORY 7

The space immediately following the arena structure up to the location given by the
limit field is the allocatable portion of the arena. avail points to the first free location;
space below avail has been allocated and space beginning at avail and up to limit is
available.

The arenas for objects with lifetime t are linked together using the next field in a
list beginning with the arena first(t]. first[t] is a zero-length arena. It has an arena header,
but no allocatable space; it serves as a list head. arenalt] points to the last arena in this
list from which space for allocation requests is taken. Arenas are added to the list
dynamically during allocation, as detailed below. Figure 1 shows an example of the
state of the arenas for lifetime group 1 after three arenas have been allocated. Shading
indicates allocated space. The unused space at the end of the first full-sized arena in
Figure 1 is explained below.

ALLOCATION AND DEALLOCATION

Allocation is simple and, like quick-fit, most allocations can be done with in-line code.
To allocate k bytes from arenalt], arenalt]->avail is simply incremented:
p = arenalt]->avail;

if ((aremal[t]->avail += k) > arenal[t]->1limit)
p = allocate(k, &arenal[t]);

In the fragment above, t is usually a constant so the array reference is reduced to a
reference to a global pointer. If k bytes do not remain in the current arena, allocate is
called with k and a pointer to the appropriate arena pointer.

All objects with lifetime t are deallocated at once by calling deallocate:

void deallocate(int t) {
if (arenalt] = first[t].next)
arena[t]->avail = (char *)arenalt] + sizeof *aremalt];
else
arenalt] = &first[t];

arenall}

first[1]

next

limit
avail hé)

Figure 1. Arena list for lifetime group |

8 D. R. HANSON

deallocate(t) resets arenalt] to point to the first zero-length arena, first[t]. The list of
arenas is nof modified; thus, subsequent allocations will cause arenalt] to reuse the
existing arenas. The code in deallocate anticipates this use and advances arenalt] past
the initial zero-length arena, if possible; otherwise it re-initializes arenalt].

When an allocation request cannot be satisfied in the current arena, allocate is called
to advance to the next arena, if it exists, or to allocate a new one.

char *allocate(int n, struct arema **p) {
struct arena *ap;

for (ap = *p; ap->avail + n > ap~>limit; #p = ap)
if (ap—>next) { /* move to next arema */
ap = ap->next;
ap->avail = (char *)ap + sizeof *ap;
¥ else { /* allocate a New arena */
int m = ((n + 3)&°3) + MEHINCR*1024 + sizeof *ap;
ap->next = (struct arena *) morecore(m);
ap = ap->next;
ap->limit = (char *)ap + m;
ap->avail = (char *)ap + sizeof *ap;
ap—>next = 0;
3
ap->avail += n;
return ap—>avail - n;
¥
allocate is slightly more general than necessary; it handles allocation requests for non-
full arenas (by simply incrementing ap->avail) as well as full ones. It can thus be called
where the details of arenas are best hidden from the caller.

If the request cannot be satisfied from the current arena, allocate attempts to advance
to the next arena on the list. If this arena exists, its avail field is reset. This arena
might be too small to accommodate the request, which explains the use of the for loop.

If the end of the arena list has been reached, allocate requests more memory from
the system by calling morecore. Enough memory is requested to accommodate the
current request rounded to the next multiple of four bytes ((n+3)&~3), plus the size of
a nominal arena (MEMINCR*1024), plus the size of the arena structure itself (sizeof
*ap). MEMINCR is defined to be a value that is appropriate for the specific application;
in lcc, for example, MEMINCR is 10. The newly acquired arena is initialized and
appended to the arena list.

After ap has been advanced to the next arena, either an existing one or a new one,
the arena pointer is set to point to the new arena. A pointer to this pointer is passed
to allocate as shown above in the allocation fragment.

EXPERIENCE

Objects allocated in lcc come in only a few sizes. Initially, lcc used quick fit, and
deallocated objects explicitly as described in the introduction. This deallocation not
only took time, but increased the complexity of the code significantly. It was easy to
forget deallocations, which caused lost storage, and deallocations of linked structures
required complex loops or recursive traversals.

As lcc evolved, most of these deallocations clustered at a few times during the
compilation, primarily at the ends of statements and at the ends of functions. Replacing
quick fit with the arena-based algorithm left allocations unchanged and eliminated all
explicit deallocations except one at the end of each function. Doing so not only

FAST ALLOCATION AND DEALLOCATION OF MEMORY 9

simplified the code and avoided lost storage due to missing deallocations, it also
improved the overall execution time of Icc by eight to ten per cent. Once allocation
became so cheap, subsequent development was free to use simple applicative algorithms
in place of more space-efficient but complex ones.

Although execution time decreased, memory usage increased because per-statement
deallocations were delayed until the end of each function. lcc compiles expressions into
abstract syntax trees, does some tree rewriting, and builds dags from the trees for basic
blocks. This process occurs essentially on a per-statement basis, and once the dags are
built, the space for the trees can be reused. Deferring the reclamation of trees increased
the amount of memory allocated by seven or eight per cent when compiling typical C
programs.

For atypical C programs that contained particularly large functions, however, the
increase was noticeably larger, bounded only by the size of the largest function. This
problem was solved by essentially creating a third lifetime group for trees only, which
reduced overall memory consumption to approximately that obtained with quick fit.
For some programs, the memory consumption can be even less than for quick fit
because the arena-based algorithm does not suffer fragmentation due to quantized block
sizes.

IMPROVEMENTS

The algorithm described above is fast because most allocations take only a few instruc-
tions and deallocations are nearly free. This speed may come at the cost of space,
however. Objects are grouped into a few lifetime classes; two or three is typical. Short-
lived objects may be grouped with longer-lived objects just to keep the number of
lifetime groups small, which ties up memory longer than strictly necessary. Delaying
the reclamation of trees in Icc as described above is an example.

The arena lists may also waste memory. As shown above, once an arena is linked
into an arena list, it remains devoted to that list. Thus, for example, if initial allocations
in some lifetime group require three arenas, but subsequent allocations require only
one arena, two arenas are wasted after their initial use.

The impact of this problem can be reduced by returning the arenas to a list of free
arenas in deallocate instead of leaving them linked in an arena list. If freearenas heads
a list of free arenas linked via their next fields, deallocate becomes

void deallocate(int t) {
arenal[t]->next = freearenas;
freearenas = first[t].next;
first[t].next = 0;
arenalt] = &first[t];

}

Likewise, allocate attempts to get a free arena from freearenas before requesting more
space from the operating system. This modification adds the following case to the body
of the loop in allocate:

if (ap—>next) { /* move to next arena */
ap = ap->next;
ap->avail = (char *)ap + sizeof *ap;
} else if (ap->next = freearenas) {
freearenas = freearenas->next;
ap = ap->next;

10 D. R. HANSON

ap—>avail = (char *)ap + sizeof *ap;
ap->next = 0;
} else { /* allocate a new arena */

¥

This addition to allocate is written so that the arena lists can be preserved for some
lifetime groups or added to the free list for others. Since allocate is called infrequently,
the additional cost of maintaining freearenas is negligible.

When a request cannot be filled in the current arena, allocate moves to, or allocates,
the next arena, wasting the space at the end of the previous arena. This is illustrated
in the first full-size arena in Figure 1. This loss to internal fragmentation is insignificant
if the size of arenas is much larger than the average size of allocation requests. For
example, lcc’s average allocation request is less than 100 bytes and its arenas are at
least 10K bytes, so typical fragmentation loss per arena is about one per cent.
Infrequent, large requests can increase the fragmentation loss, but the space will be
reused when the lifetime group is deallocated.

In some applications, the arena list for one lifetime group might grow much larger
than the others. In lcc, for example, there are two important lifetime groups, one for
permanent objects such as symbol-table entries for global variables and constants, and
one for ‘transient’ objects, such as symbol-table entries for local variables and nodes
for dags. The transient arena list tends to be much larger than the permanent list.
Reducing the length of the arena list by enlarging each arena would reduce fragmen-
tation and reduce the number of calls to allocate. This can be accomplished by using
different arena sizes for different lifetime groups, or by making the nominal size of an
arena (MEMINCR in the code above) a function of its position in an arena list.

A simpler approach joins physically adjacent arenas that are also adjacent on the
same arena list. Lifetime groups that grow quickly lead to this situation; when space
for a new arena is requested by calling morecore, it is likely that the newly allocated
arena immediately follows the last arena on the arena list. This case can be detected
in allocate.

if (ap—>next) { /* move to next arena */
} else if (ap->next = freearenas) {
} else { /* allocate a new arena */

int m = ((a + 3)&73) + MEMIECR*1024 + sizeof *ap;
ap->next = (struct arema *) morecore(m);

if ((char *)ap->next == ap->limit) /* extend previous arena? */
ap->limit = (char *)ap->next + m;
else { /% link to a new arena */

ap = ap->next;
ap->limit = (char *)ap + m;
ap—>avail = (char *)ap + sizeof *ap;
}
ap->next = 0;

If the newly allocated arena is physically adjacent to the last one, the limit field of the
last arena is adjusted accordingly, and allocation continues from that arena with no
fragmentation. This improvement is essentially free; like the cost of maintaining

FAST ALLOCATION AND DEALLOCATION OF MEMORY 11

freearenas, the cost of detecting physically adjacent arenas occurs only during the
infrequent calls to allocate. Indeed, the combined time cost of both these improvements
is undetectable in Icc, and typically reduces the amount of memory allocated by five
per cent.

DISCUSSION

Storage-management algorithms trade flexibility for cost per byte allocated. This cost
includes both the allocation and deallocation costs. Stack allocation is at one end of
the spectrum. For example, the in-line stack-allocation fragment
p = avail;
if ((avail += k) > limit)
p = allocate(k);

requires about five instructions on a VAX. This instruction count and those below are
taken from the code generated by lcc, which is typical of C compilers. Other compilers
may produce different instruction counts, but the relative costs between the algorithms
will remain approximately the same. Deallocation cost is negligible; in the best case,
the space for many objects can be deallocated in one instruction. Thus, for N allocations
of an average of k bytes each, stack allocation costs about 5N/k instructions executed
per byte allocated. The price of this efficiency is reduced flexibility; stack allocation
can be used only when object lifetimes nest properly.

Garbage collection® represents the other end of the spectrum. Whereas an allocation
costs no more than with stack allocation, deallocation can be very costly and yield a
high overall cost per byte. Garbage collection is very flexible, however, and imposes
no restrictions on object lifetimes and does not require explicit deallocations. Similar
comments apply to algorithms based on reference counting, which incur additional
costs in maintaining reference counts when pointers are created or destroyed. (Using
very large physical memories can dramatically reduce the cost of deallocations and
make garbage collection competitive with stack allocation.®)

Algorithms based on object sizes fall in the middle of this spectrum. First fit, for
example, typically requires a search of a list of free blocks, and deallocations require
a similar search if a sorted free list is used. Deallocation, and thus first fit as a whole,
normally costs less than garbage collection. First fit imposes no lifetime restrictions on
objects, but it does require explicit deallocations; for example, lcc would have to loop
over local symbols at the end of each function and deallocate each symbol. On the
VAX, allocation of & bytes costs about 3X6+8 instructions, assuming that the search
loop examines three blocks on average as reported in Reference 1. Deallocation costs
about 3X6+13 instructions plus the cost of the code in which the deallocations appear.
Thus, for N allocations of £ bytes each, first fit costs about 57N/ instructions per byte
on the average. One disadvantage of first fit and similar algorithms is that it is difficult
to put the code for most allocations in-line.

As described above, quick fit can cost significantly less than first fit in some appli-
cations. The in-line allocation fragment shown in the introduction costs about eight
instructions on a VAX when freelist(k] points to a free block. Most deallocations cost
about seven instructions using the code shown in the introduction, plus the cost of the
code in which the deallocations occur. (If k is a compile-time constant, these costs can
be reduced to four and two instructions, respectively.) Thus, in the best case, N

12 D. R. HANSON

allocations of k2 bytes each cost at least 15N/k instructions per byte. Although quick fit
costs about three times more than stack allocation, it is significantly more flexible and
costs less than a third the cost of first fit.

The arena-based algorithm presented in this paper retains quick fit's reliability, but
is almost as efficient as stack allocation by avoiding per-object deallocations. This
improvement comes at the cost of extra memory. Using the in-line allocation code
shown in the third section, allocations cost about eight instructions on the VAX, when
there is room in the current arena and t is a compile-time constant. Deallocation cost,
as in stack allocation, is negligible. Thus, the best-case cost for \" allocations of £ bytes
each is 8N/k instructions per byte — almost half the cost of quick fit and less than
twice the cost of stack allocation.

ACKNOWLEDGEMENTS

Chris Fraser’s comments helped clarify several sections of this paper.
p ¥ pap

REFERENCES

1. D. E. Knuth, The At of Compuier Programming: Volume 1, Fundamental Algorithms, Addison Wesley,

Reading, M4, second edn, 1973.

C. B. Weinstock and W. A. Wulf, ‘Quick fit: an efficient algorithm for heap storage management’,

SIGPLAN Notices, 23, (10), 141-148 (1988).

. J. Cohen, ‘Garbage collection of linked data structures’, Computing Sirvevs, 13, (3), 341-367 (1981).

. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs

NJ, second edn, 1988.

. A. W. Appel, ‘Garbage collection can be faster than stack allocation’, Inf. Proc. Letters, 25, (+), 275-279
(1987).

N

N

s

w

Date: Sun, 24 Mar 91 16:47:57 -0500
From: Dave Hanson <drh>

To: preston@rice.edu

Subject: Arenapaper in SP&E

Date: Sun, 24 Mar 91 14:01:42 CST
From: preston@rice.edu (Preston Briggs)

A friend pointed out your “Fast Allocation...” paper in the January 1990 SP&E. It's very nice, both
the ideas and the writing, and | expect it will be very useful. However, | think I've discovered a
slight performance bug, causing it to use more memory than necessary.

The inline code for allocation is given as

p = arena[t]->avail;
if ((arena[t]->avail += k) > arena[t]->limt)
p = allocate(k, &arena[t]);

In the if-condition, you increment the value of “ar ena[t] - >avai | ”. This happens even if
al | ocat e is called. You also increment avai | at the end of al | ocat e. This is normally ok,
since al | ocat e will be working with a different arena.

But in the final version of al | ocat e, which will extend the last arena if possible, an extended
arena will have avai | incremented twice, leaving an unused gap in the current arena.

The simplest correction seems to be a change to the inline code:

p = arena[t]->avail;

if (arena[t]->avail + k > arena[t]->limt)
p = allocate(k, &arena[t]);

el se
arena[t]->avail += k;

| think your analysisis correct; good detective work!
In practice, | use adifferent inline allocation macro that can be used in any expression context:
#define alloc(n,ap) (ap->avail + (n) > ap->limt ?\

all ocate(n, &ap) : \

(ap->avai|l += (n), ap->avail - (n)))

eg., al l oc(k, arenat]).Asyou can see, thismacro is equivalent to your version. | wanted to clean it up and
avoid using macros for publication, but in doing so, | introduced a bug!

