

Date: Sun, 24 Mar 91 16:47:57 -0500
From: Dave Hanson <drh>
To: preston@rice.edu
Subject: Arena paper in SP&E

Date: Sun, 24 Mar 91 14:01:42 CST
From: preston@rice.edu (Preston Briggs)

A friend pointed out your “Fast Allocation...” paper in the January 1990 SP&E. It's very nice, both
the ideas and the writing, and I expect it will be very useful. However, I think I've discovered a
slight performance bug, causing it to use more memory than necessary.

The inline code for allocation is given as

 p = arena[t]->avail;
 if ((arena[t]->avail += k) > arena[t]->limit)
 p = allocate(k, &arena[t]);

In the if-condition, you increment the value of “arena[t]->avail”. This happens even if
allocate is called. You also increment avail at the end of allocate. This is normally ok,
since allocate will be working with a different arena.

But in the final version of allocate, which will extend the last arena if possible, an extended
arena will have avail incremented twice, leaving an unused gap in the current arena.

The simplest correction seems to be a change to the inline code:

 p = arena[t]->avail;
 if (arena[t]->avail + k > arena[t]->limit)
 p = allocate(k, &arena[t]);
 else
 arena[t]->avail += k;

I think your analysis is correct; good detective work!

In practice, I use a different inline allocation macro that can be used in any expression context:

#define alloc(n,ap) (ap->avail + (n) > ap->limit ? \
 allocate(n, &ap) : \
 (ap->avail += (n), ap->avail - (n)))

e.g., alloc(k,arena[t]). As you can see, this macro is equivalent to your version. I wanted to clean it up and
avoid using macros for publication, but in doing so, I introduced a bug!

