A PROCEDURE MECHANISM FOR BACKTRACK PROGRAMMING*

David R. HANSON*
Department of Computer Science, The University of Arizona
Tucson, Arizona 85721

One of the difficulties in using nondeterministic algorithms for the solution of combinatorial
problems is that most programming languages do not include features capable of easily repre-
senting backtracking processes. This paper describes a procedure mechanism that uses co-
routines as a means for the description and realization of nondeterministic algorithms. A
solution to the eight queens problem is given to illustrate the application of the procedure

mechanism to backtracking problems.

1. INTRODUCTION

Although backtrack programming has been known for
several years [1-4], the method has yet to become
a common programming technique for the realization
of nondeterministic algorithms. Floyd [1] alluded
to the reason for this situation: most program-
ming languages do not include features that facil-
itate backtrack programming. He suggested that
programming languages ought to possess mechanisms
capable of representing nondeterministic algo-
rithms.

Since the appearance of Floyd's paper, consider-
able research has been undertaken to add facili-
ties of this kind to new or existing languages.
This work has covered a large part of the spec-
trum of programming languages, from general de-
scriptions with a slant toward Algol-like lan-
guages [5,6], to languages for artificial intel-
ligence research [7], and even to Fortran [8].
In all the work cited, features that were added
or proposed for backtracking were cast in a
framework of recursive functions with additional
built-in mechanisms or primitives with which to
implement backtracking. That is, the basic pro-
cedure mechanism of the proposed languages or
language extensions was the traditional recursive
function.

This paper presents a general procedure mechanism
that includes coroutines as a means for the de-
scription and realization of nondeterministic
algorithms. The SL5 programming language [9-12]
in which this procedure mechanism is implemented
is the vehicle used to describe this method and
its application to backtrack programming.

*This work was supported by the National Science
Foundation under Grant DCR75-01307.

*Author's present address: Department of Computer
Science, Yale University, New Haven, Connecticut
06520.

To facilitate comparison with previous work, the
eight queens problem [13-15] is used as the exam-
ple of backtracking throughout this paper. This
is a nontrivial problem whose solution is ideally
suited to the backtracking strategy, and has
frequently been used as an example that can be
solved by nondeterministic programming.

2. THE SL5 PROGRAMMING LANGUAGE

SLS is an expression-oriented language that is
structurally similar to BLISS or Algol 68, SLS
is a "typeless" language in the same sense that
SNOBOL4 is -- a variable can have a value of any
datatype at any time during program execution,

2.1 Control Structures and Signaling

An expression returns a signal, '"'success" or
"failure'", as well as a value. The combination
of a value and a signal is called the result of
the expression. SLS possesses most of the "mod-
ern" control structures, each of which is an
expression and returns a result. Control
structures are driven by signals rather than by
boolean values. For an example, in the expression

if e then e, else e,
e1 is evaluated first. If the resulting signal
is success, ey is evaluated. Otherwise, ez is
evaluated. The result of the if-then-else ex-
pression is the result (value and signal) of e,
or ez, whichever is evaluated.

Other typical control structures are:

while e do e2

until e; do ep

repeat e

for v from e; to e; do ez
]

The while and for expressions behave in the con-
ventional manner. The until expression repeated-
ly evaluates e, until e; succeeds. The regeat
expression eva%uates e repeatedly until a failure
signal is returned. Expressions may be grouped
together as a single expression using

begin ... end or { ... }.

2.2 Procedures

In SL5, procedures and their environments
(activation records) are separate source-language
data objects. A procedure is ''created" by an
-expression such as

ged := procedure (x, y)
while ~= y do
if x > y then & := x-y else y :=
succeed x
end;

y-x;

which assigns to ged a procedure that computes
the greatest common divisor of its arguments.

The invocation of a procedure in the standard
recursive fashion is accomplished using the usual
functional notation f(eq,e3, ... ,en), which
invokes the procedure that is the current value
of the variable f.

Procedure activation may be decomposed into sev-
eral distinct source-language operations that
permit SLS procedures to be used as coroutines.
These operations are the creation of an environ-
ment for the execution of the given procedure,
the binding of the actual arguments to that envi-
ronment, and the resumption of the execution of
the procedure.

The create expression takes a single argument of
datatype procedure, creates an environment for
its execution, and returns this environment as
its value. For example, the expression

e := create [

assigns to e an environment for the execution of

f.

The with expression is used to bind the actual
arguments to an environment. The expression

vee s€)

e with (el,ez, n

binds the actual arguments, e1 through s to the
environment e.

The execution of a procedure is accomplished by
"resuming" it via the resume expression. The
expression

resume e
suspends execution of the current procedure and
activates the procedure for which e is an envi-

ronment.

A procedure usually "returns' a result to its
"'"resumer".

succeed v
fall v

This is accomplished by the expressions

402

which return v as the value of the procedure and
signal either success or failure as indicated.
If the procedure is activated by a resume, the
result given in succeed or fail is transmitted
and becomes the result of the resume expression.
The execution of succeed or fail causes the sus-
pension of that environment. If the environment
is again resumed, execution proceeds from where
it left off. The argument ¥ may be omitted, in
which case the null string is assumed.

A label generator illustrates a simple example of
coroutine usage:

genlab := procedure (n)

repeat {
succeed "L" || Ipad(n, 3, "0');
n = n+l
}

end;

An environment for genlab generates the next
label of the form Lnnn each time it is resumed.
The sequence begins at the integer given by the
argument. (IZpad is a built-in procedure that
pads n on the left with zeros to form a
3-character string, and denotes string concat-
enation.) For example, an expression such as

gen := create genlab with 10

assigns to gen an environment for genlab that
generates a sequence of labels beginning at L010.
To obtain the next label, the execution of the
environment is resumed:

X = resume gen

Notice that the sequence may be restarted by
retransmitting the argument, e.g.,

gen := gen with 10
2.3 Declarations

SL5 has declarations for identifiers that are
used to determine only the interpretation and
scope of identifiers that appear in a procedure,
not their type. The declaration

private x

declares x to be a private identifier whose value
is available only to the procedure in which it is
declared; it cannot be examined or modified by
any other procedure. Private identifiers are
used, for example, when a coroutine must "remem-
ber" information from one resumption to the next.
Other declarations and the scope of identifiers
are described in refs. 9 and 12.

3. BACKTRACKING AND THE EIGHT QUEENS PROBLEM
There are many problems for which an analytic
solution is not known, but for which a solution
can be constructed by trial and error. A classic
example is the eight queens problem, sometimes
referred to as the n-by-n nonattacking queens
problem. The object is to place eight queens on
a chess board so that no queen can capture any of
the others. One such solution is shown in fig, 1.

There are 92 solutions to this problem, although
only 12 are unique.

° a

oW

'8
1
column

Fig. 1 - A Solution to the Eight Queens Problem

A brute force approach to this problem is to test
all the possible configurations of the queens to
find the 92 "safe'" ones. Although the number of
possible configurations can be substantially
reduced by observing that only one queen may
occupy a given column, the brute force approach
requires an impractical amount of computation.

3.1 Backtracking

A better approach for solving this type of prob-
lem is to construct a solution one queen at a
time rather than testing the validity of every
possible configuration. This is called the
"backtracking'" approach. For example, if the
first queen (the leftmost one in fig. 1) is
placed on row 1, the second queen can only be
placed on rows 3 through 8. Configurations with
the first queen on row 1 and the second queen on
row 1 or 2 cannot lead to a solution regardless
of the positions of queens 3 through 8. Thus
only the partial solutions (1,3), (1,4), ...,
(1,8) need to be considered when searching for a
solution.

The idea in backtracking is to form the kth par-
tial solution (®y,x;,...,xy) and extend it to a
k+lst partial solution (xy,x,...,2k,%k+1) bY
selecting a suitable xy,q. When k+1 is equal to
8, a complete solution has been found. The term
backtracking is derived from the action taken
when the kth partial solution cannot be extended
to a k+lst partial solution. In this case, it is
necessary to "backtrack' to the k-1 partial solu-
tion and try to compute a different z) for a kt
partial solution. This backtracking step re-
quires that whatever computation was required to
form the kth partial solution be undone in order
to get back to the k-1 partial solution. This is
often called '"reversing effects" or 'backwards
execution". For the eight queens problem, this
amounts to freeinE the squares on the board
covered by the kth queen.

For example, it is easy to place the first five
queens to form the partial solution (1,3,5,2,4).
But the sixth queen cannot be placed. It is
necessary to backtrack to the partial solution
(1,3,5,2) and try again. This partial solution
can be extended to (1,3,5,2,8) but no further.
It is necessary to backtrack all the way to the
partial solution (1,3,5), which c¢an then be ex-
tended to (1,3,5,7,2,4,6). This backtracking
process continues until the solution
(1,5,8,6,3,7,2,4) is found, which is shown in
fig. 1.

A more formal description of the backtracking
strategy is given in ref. 2. A particularly
lucid explanation can be found in ref. 16, which
describes a method for estimating the efficiency
of backtracking programs.

3.2 Realization of the Nondeterministic

Algorithm

The usual method for programming the solution to
the eight queens problem is to use a procedure
that generates all solutions with the first queen
on rows 1 to 8 by calling itself recursively to
generate all solutions for the second queen in
rows 1 to 8, etc. The following procedure, simi-
lar to the Pascal solution given in ref. 15,
operates in this fashion.

generate := procedure (col) private row;
for row from 1 to 8 do
T if test(row, col) then {
occupy (row, col);
x[eol] := row;
if col = 8 then print(x)
else generate(col+l);
release(row, col)
succeed
end;

The details of the board representation are con-
tained in procedures test, occupy, and release.
test (row, col) succeeds if the queen in column
col can be placed on the indicated row. The
procedure occupy (row, col) marks as occupied all
positions covered by the queen at the position
row, col. release(row, col) reverses the effect
of oceupy; it marks those positions covered by
the given queen as free. Possible representa-
tions for the actual board are given in refs. 1 and
13-15. print(x) prints the contents of the solu-
tion vector z.

The program is started by generate(l). A portion
of the backtracking in this solution is somewhat
obscured by the recursion; it is accomplished
implicitly by repeated recursive invocations of
generate. It is not necessary to use recursion
to accomplish the backtracking but it is some-
times used because the only form of procedure
available is the recursive function.

The coroutine method, on the other hand, does not
require the use of recursion to accomplish the
backtracking. The basic approach is to create
eight environments for a single procedure; one
for each column. Each environment represents one
queen. The procedure, called queen, attempts to
place a queen on the given column beginning with

403

row 1. If a queen is successfully placed, the
procedure suspends its execution and signals
success to its resumer. If it is subsequently
resumed, it reverses its previous effects, i.e.
removes the queen from the row, and tries the
next row. If the queen cannot be placed, the
procedure fails indicating that backtracking must
occur. Subsequent resumption after failure indi-
cates that the process should begin again at

row 1,

The eight environments for procedure queen are
stored in a vector q. The first step is to
create the eight environments for procedure
queen, each with the proper column number:

q := vector(l, 8);
for i from 1 to 8 do
q[i] t= create queen with 7;

To begin the search for a solution, the execution
of the first queen, gq[1], is resumed. The second
queen is then resumed, and so on, If the resump-
tion of a queen fails, backtracking is indicated.
If the t% queen fails, queen i-1 must be resumed
in order to be repositioned. This is equivalent
to queen -1 attempting to find a new -1 partial
solution., If the Z%% queen succeeds, queen i+1
is resumed in hopes of extending the Z¥" partial
solution, A complete solution has’ been found
when the eighth queen is successfully placed,
This entire process can be written as

=13
until 7 > & do
if resume g[Z]
then 7 := 7+1
else 1 := 1-1;
print(z);

The index 7 is incremented as long as the ith
queen is successfully glaced, i.e., as long as
the extension to the £th partial solution is
possible. It is decremented when the zth queen
signals failure indicating that the it partial
solution could not be formed.

The procedure queen is as follows.

queen := procedure (col) private row;
repeat {
for row from 1 to 8 do
"Tif test(row, col) then {
oceupy (row, col);
x[eol] := row;
succeed;

release (row, col)

s

fail
end;

The expression repeat { ... } is a nonterminating
loop.

All 92 solutions can be found by modifying the
until loop given above so that after a solution
has been found the execution of the eighth queen
is again resumed. If the subsequent placement is
successful, a second solution is generated. If
it fails, the seventh queen must be repositioned.
This is equivalent to making a solution fail,

after recording it, in order to search for all
possible solutions using the backtracking strategy.
The process is stopped when the first queen
signals failure. This loop can be written as
follows.

i :=1;
until ¢ = 0 do
if resume gqli]
“then (if < = 8 then print(z) else ¢ := i+1)
else 7 := £-1;

Notice that 7 is not incremented after successful
placement of the eighth queen, thus forcing its
repositioning at the next resumption. This pro-
gram can be generalized for »n queens by substi-
tuting n wherever 8 appears.

The general form is the same for many similar
backtracking problems. For example, if the pro-
cedures test, occupy, and release are modified to
assume rooks instead of queens, the program com-
putes all possible permutations of the integers 1
to n.

4. COMPARISON OF THE METHODS

The major difference between the recursive ap-
proach and the coroutine approach is in the con-
trol regime used to achieve backtracking. This

is illustrated in fig. 2. The left part of fig. 2
shows the control relationship among the eight
instantiations of generate when a recursive solu-
tion has been computed. The relationship is
strictly hierarchical: generate is written to use
recursion in order to '"resume' the next queen.

The procedure generate must include not only the
semantics of placing a queen, but is must also
contain the backtracking mechanism.

The right part of fig. 2 shows the control rela-
tionship among the eight environments for the
coroutine solution. In this case, the procedure
only needs to know how to place a queen, not
about the order in which each environment is
resumed. The main program controls the resump-
tion of the coroutines.

progrem
generate (1)
main program
2
3
49
5
6
queen queen
7 i 2 3 4 5 6 1 '8
gensrate {8)

Fig. 2 - Control Regimes among the Eight Queens

404

5. CONCLUSIONS

The procedure facility of a high-level language

is one of the most powerful tools for abstraction
available to the programmer. The SLS mechanism is
designed to provide, at the linguistic level,
facilities that permit the programmer to implement
solutions to backtracking problems in a way that
closely parallels the abstract formulation of the
problem.

The coroutine approach to backtracking is not lim-
ited to SL5. The same idea can be used in other
languages that support coroutines, such as Simula
67 L17]. Alternatively, SL5 can be used as a
specification language in which to formulate the
solutions to backtracking problems. The resulting
program can then be used as a guide to an actual
implementation in a lower-level language. This is
done in the Appendlx for the eight queens problem;
the SLS program given in sec. 3.2 is used as a
guide for constructing a solution in Fortran.

There are other problems, such as parsing and
string pattern matching, that can be solved using
backtracking techniques. Unlike the eight queens
problem, however, the domain of the search is not
known beforehand, but is determined as the search
proceeds. Nonetheless, the coroutine approach
appears to be applicable to these types of prob-
lems. For example, SL5 contains a pattern-
matching facility that is based on a coroutine
model of pattern matching in SNOBOL4 [18], The
SLS facility is significantly more general and
flexible than the facility in SNOBOL4, and has
proven to be easier to implement and to understand
than the resursive approach used in SNOBOL4
[19,20].

ACKNOWLEDGEMENT

Significant contributions to SL5 have been made
by Dianne E. Britton, Frederick C. Druseikis, and
Ralph E. Griswold.

APPENDIX

The following Fortran program computes all 92
solutions to the eight queens problem, and is
derived from the SL5 program given in sec, 3,2.
The board representation, embodied in test, occu-
Py, and release, can be derived from that given
in refs. 13-15.

[main program logical function queen col)
logical queen integer row, col, j. p{(8)
integer row, i logical test

common /env/ row(8) common /env/ row(8)

c data p/8*1/

i=1 c
30 if (i .le. 0) sto

p 3 = plcol)
}f (?uee?(i)) go to 40 90 to (10, 20, 50),§

[+

go to 30 10 if érou(co1) t. 8) go to 40
[if (.not test?rou(co]), col))

40 if (i .eq. 8) go to SO 1 go to 30

=i+ call occupy(row{col), col)

go to 30 p(col) = 2
50 write(6, 100) row queen = .true
100 format(8(1x, 1)) return

go to 30 c

end 20 call releas(row(col), col)

30 row(col) = row(col) + 1
go to 10
c
40 p(col) = 3
queen = .false.
return

-50 row(col) = 1
go to 10

end

405

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]

(71

{8l

[9]

[10]

[113

[12]

[13]

{143

[15]

f16]

[17]

[18]

[19]

[20]

Robert W. Floyd, Nondeterministic algorithms,
J. ACM, vol. 14, October 1967, 636-644.
Solomon W. Golomb and Leonard D. Baumert,
Backtrack programming, J. ACM, vol. 12,
October 1965, 516-524.

Derrick H. Lehmer, Combinatorial problems
with digital computers, Proc. of the Fourth
Canadian Math. Congress, 1957, 160-173.
Robert J. Walker, An enumerative technique
for a class of combinatorial problems,

Proc. of the Symposium on Applied Mathemat-
ics, vol. 10, October 1960, 91-94.

Eﬂailes J. Prenner, Jay M. Spitzen and Ben
Wegbreit, An implementation of backtracking
for programming languages, Proc. of the ACM
Annual Conference, August 1972, 763-771.

John A. Self, Embedding non-determinism,
Software -- Practlce and Experience, vol.

5, September 1975, 221-227.

Dan1e1 G. Bobrow and Bertram Raphael, New
programming languages for artificial intel-
ligence, Computing Surveys, vol. 6, Septem-
ber 1974, 155-174.

Jacques Cohen and Eileen Carton, Non-
deterministic fortran, Computer J., vol.
February 1974, 44-51.

Dianne E. Britton, et al., Procedure refer-
encing environments in SL5, Third ACM
Symposium on Principles of Programming
Languages, "January 1976, 185-191.

Ralph E. Griswold and Dav1d R. Hanson, An
overview of the SL5 programming language,

SLS project document SS5LDla, Dept. of
Computer Science, The University of Arizona,
Tucson, February 1976.

David R. Hanson, The syntax and semantics of
SL5, SL5 project document S5LD2a, Dept. of
Computer Science, The University of Arizona,
Tucson, April 1976.

David R. Hanson and Ralph E. Griswold, The
SL5 procedure mechanism, SL5 project document
S5LD4, Dept. of Computer Science, The Univer-
sity of Arizona, Tucson, February 1976.
Ole-Jahn Dahl, Edsger W. Dijkstra and C. A.
R. Hoare, Structured Programming, Academic
Press, London, 1972, sec. I.17.

Niklaus Wirth, Program development by step-
wise refinement, Comm. ACM, vol. 14, April
1971, 221-227.

Niklaus Wirth, Algorithms + Data = Programs,
Prentice-Hall, Englewood Cliffs, New Jersey,
1976, sec. 3.5.

Donald E. Knuth, Estimating the efficiency of
backtrack programs, Mathematics of Computa-
tion, vol. 29, January 1975, 121-139.

Ole-. Jahn Dahl, Bjorn Myhrhaug and Kristen
Nygaard, The Simula 67 common base language,
Norwegian Computing Centre, Oslo, Norway,
1968.

Frederick C. Druseikis and John N. Doyle, A
procedural approach to pattern matching in
SNOBOL4, Proc. of the ACM Annual Conference,
November 1974, 311-317.
Ralph E. Griswold, String scanning in SL5,
SLS project document S5LD5a, Dept. of
Computer Science, The University of
Arizona, Tucson, June 1976.

Ralph E. Griswold, String analysis and
synthesis in SL5, Proc. of the ACM Annual

Conference, October 1976.

17,

