
Appeared in ACM Letters on Programming Languages and Systems 1, 3 (Sep. 1992), 213-226.

Engineering a Simple, Efficient Code Generator
Generator

CHRISTOPHER W. FRASER
AT&T Bell Laboratories
and
DAVID R. HANSON
Princeton University
and
TODD A. PROEBSTING
The University of Arizona

Many code generator generators use tree pattern matching and dynamic programming. This
note describes a simple program that generates matchers that are fast, compact, and easy to
understand. It is simpler than common alternatives: 200–700 lines of Icon or 950 lines of C versus
3000 lines of C for Twig and 5000 for burg. Its matchers run up to 25 times faster than Twig’s.
They are necessarily slower than burg’s BURS (bottom-up rewrite system) matchers but they are
more flexible and still practical.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors — code
generation, compilers, translator writing systems and compiler generators

General terms: Languages
Additional Key Words and Phrases: code generation, code generator generator, dynamic pro-
gramming, tree pattern matching, Icon programming language

1. INTRODUCTION

Many code generator generators use tree pattern matching and dynamic program-
ming (DP) [3, 4, 8]. They accept tree patterns and associated costs and semantic
actions that, for example, allocate registers and emit object code. They produce
tree matchers that make two passes over each subject tree. The first pass is bot-
tom up and finds a set of patterns that cover the tree with minimum cost. The
second pass executes the semantic actions associated with minimum-cost patterns
at the nodes they matched. Code generator generators based on this model include
BEG [7], Twig [2], and burg [13].

BEG matchers are hard-coded and mirror the tree patterns in the same way
that recursive-descent parsers mirror their input grammars. They use dynamic

Authors’ addresses: C. W. Fraser, AT&T Bell Laboratories, 600 Mountain Avenue 2C-464, Mur-
ray Hill, NJ 07974-0636; D. R. Hanson, Department of Computer Science, Princeton University,
Princeton, NJ 08544; T. A. Proebsting, Department of Computer Science, The University of
Arizona, Tucson, AZ 85721.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2 ·
programming at compile time to identify a minimum-cost cover.

Twig matchers use a table-driven variant of string matching [1, 15] that, in
essence, identifies all possible matches at the same time. This algorithm is asymp-
totically better than trying each possible match one at a time, but overhead is
higher. Like BEG matchers, Twig matchers use DP at compile time to identify a
minimum-cost cover.
burg uses BURS (bottom-up rewrite system) theory [5, 6, 17, 18] to move the DP

to compile-compile time. BURS table generation is more complicated, but BURS
matchers generate optimal code in constant time per node. The main disadvantage
of BURS is that costs must be constants; systems that delay DP until compile time
permit costs to involve arbitrary computations.

This paper describes a program called iburg that reads a burg specification and
writes a matcher that does DP at compile time. The matcher is hard coded, a
technique that has proven effective with other types of code generators [9, 12].
iburg was built to test early versions of what evolved into burg’s specification
language and interface, but it is useful in its own right because it is simpler and
thus easier for novices to understand, because it allows dynamic cost computation,
and because it admits a larger class of tree grammars [16]. iburg has been used
with good results in a first course on compilers. burg and iburg have been used also
to produce robust VAX, MIPS, and SPARC code generators for lcc, a retargetable
compiler for ANSI C [11].
iburg and BEG produce similar matchers, but this note describes them in more

detail than the standard BEG reference [7]. In particular, it describes several
optimizations that paid off and two that did not, and it quantifies the strengths
and weaknesses of such programs when compared with programs like Twig and
burg.

2. SPECIFICATIONS

Figure 1 shows an extended BNF grammar for burg and iburg specifications.
Grammar symbols are displayed in slanted type and terminal symbols are displayed
in typewriter type. {X} denotes zero or more instances of X , and [X] denotes an
optional X . Specifications consist of declarations, a %% separator, and rules. The
declarations declare terminals — the operators in subject trees — and associate a
unique, positive external symbol number with each one. Non-terminals are declared
by their presence on the left side of rules. The %start declaration optionally de-
clares a non-terminal as the start symbol. In Figure 1, term and nonterm denote
identifiers that are terminals and non-terminals, respectively.

Rules define tree patterns in a fully parenthesized prefix form. Every non-terminal
denotes a tree. Each operator has a fixed arity, which is inferred from the rules in
which it is used. A chain rule is a rule whose pattern is another non-terminal. If
no start symbol is declared, the non-terminal defined by the first rule is used.

Each rule has a unique, positive external rule number , which comes after the
pattern and is preceded by a “=”. As described below, external rule numbers are
used to report the matching rule to a user-supplied semantic action routine. Rules
end with an optional non-negative, integer cost; omitted costs default to zero.

Figure 2 shows a fragment of a burg specification for the VAX. This example uses
upper-case for terminals and lower-case for non-terminals. Lines 1–2 declare the
operators and their external symbol numbers, and lines 4–15 give the rules. The

· 3

grammar → { dcl } %% { rule }
dcl → %start nonterm

| %term { identifier = integer }
rule → nonterm : tree = integer [cost] ;

cost → (integer)

tree → term (tree , tree)
| term (tree)
| term
| nonterm

Fig. 1. EBNF Grammar for burg and iburg Specifications.

1. %term ADDI=309 ADDRLP=295 ASGNI=53
2. %term CNSTI=21 CVCI=85 I0I=661 INDIRC=67
3. %%
4. stmt: ASGNI(disp,reg) = 4 (1);
5. stmt: reg = 5;
6. reg: ADDI(reg,rc) = 6 (1);
7. reg: CVCI(INDIRC(disp)) = 7 (1);
8. reg: I0I = 8;
9. reg: disp = 9 (1);

10. disp: ADDI(reg,con) = 10;
11. disp: ADDRLP = 11;
12. rc: con = 12;
13. rc: reg = 13;
14. con: CNSTI = 14;
15. con: I0I = 15;

Fig. 2. Sample burg Specification.

external rule numbers correspond to the line numbers to simplify interpreting sub-
sequent figures. In practice, these numbers are usually generated by a preprocessor
that accepts a richer form of specification (e.g., including YACC-style semantic ac-
tions), and emits a burg specification [13]. Only the rules on lines 4, 6, 7, and 9
have non-zero costs. The rules on lines 5, 9, 12, and 13 are chain rules.

The operators in Figure 2 are some of the operators in lcc’s intermediate lan-
guage [10]. The operator names are formed by concatenating a generic operator
name with a one-character type suffix like C, I, or P, which denote character, in-
teger, and pointer operations, respectively. The operators used in Figure 2 denote
integer addition (ADDI), forming the address of a local variable (ADDRLP), integer
assignment (ASGNI), an integer constant (CNSTI), “widening” a character to an in-
teger (CVCI), the integer 0 (I0I), and fetching a character (INDIRC). The rules show
that ADDI and ASGNI are binary, CVCI and INDIRC are unary, and ADDRLP, CNSTI,
and I0I are leaves.

3. MATCHING

Both versions of burg generate functions that the client calls to label and reduce
subject trees. The labeling function, label(p), makes a bottom-up, left-to-right
pass over the subject tree p computing the rules that cover the tree with the min-

4 ·

ASGNI

ADDRLP i ADDI

CVCI

INDIRC

ADDRLP c

CNSTI 4

(11, 0)
[9, 0+1=1]
[5, 1+0=1]
[13, 1+0=1]

(11, 0)
[9, 0+1=1]
[5, 1+0=1]
[13, 1+0=1]

(7, 0+1=1)
[5, 1+0=1]
[13, 1+0=1]

(6, 1+0+1=2)
[5, 2+0=2]
[13, 2+0=2]
(10, 1+0+0=1)

(4, 0+2+1=3)

(14, 0)
[12, 0+0=0]

disp: ADDRLP

reg: disp

stmt: reg

rc: reg

reg: ADDI(reg,rc)

stmt: reg

rc: reg

disp: ADDI(reg,con)

stmt: ASGNI(disp,reg)

reg: CVCI(INDIRC(disp))

stmt: reg

rc: reg
con: CNSTI

rc: con

disp: ADDRLP

reg: disp

stmt: reg

rc: reg

Fig. 3. Intermediate Language Tree for i = c + 4.

imum cost, if there is such a cover. Each node is labeled with (M,C) to indicate
that “the pattern associated with external rule M matches the node with cost C.”

Figure 3 shows the intermediate language tree for the assignment expression in
the C fragment

{ int i; char c; i = c + 4; }

The left child of the ASGNI node computes the address of i. The right child com-
putes the address of c, fetches the character, widens it to an integer, and adds 4 to
the widened value, which the ASGNI assigns to i.

The other annotations in Figure 3 show the results of labeling. (M,C) denote
labels from matches and [M,C] denote labels from chain rules. The rule from
Figure 2 denoted by each M is also shown. Each C sums the costs of the non-
terminals on right-hand side and the cost of the relevant pattern or chain rule. For
example, the pattern in line 11 of Figure 2 matches the node ADDRLP i with cost
0, so the node is labeled with (11, 0). Since this pattern denotes a disp, the chain
rule in line 9 applies with a cost of 0 for matching a disp plus 1 for the chain rule
itself. Likewise, the chain rules in lines 5 and 13 apply because the chain rule in
line 9 denotes a reg.

Patterns can specify subtrees beyond the immediate children. For example, the
pattern in line 7 of Figure 2 refers to the grandchild of the CVCI node. No separate
pattern matches the INDIRC node, but line 7’s pattern covers that node. The cost
is the cost of matching the ADDRLP i as a disp, which is rule 11, plus 1.

Nodes are annotated with (M,C) only if C is less than all previous matches for
the non-terminal on the left-hand side of rule M . For example, the ADDI node
matches the disp pattern in line 10 of Figure 2, which means it also matches all
rules with disp alone on the right-hand side, namely line 9. By transitivity, it also
matches the chain rules in lines 5 and 13. But all three of these chain rules yield
cost 2, which isn’t better than previous matches for those non-terminals.

Once labeled, a subject tree is reduced by traversing it from the top down and
performing appropriate semantic actions, such as generating and emitting code.
Reducers are supplied by clients, but burg generates functions that assist in these

· 5

traversals, e.g., one function that returns M and another that identifies subtrees
for recursive visits. Reference [13] elaborates.
burg does all dynamic programming at compile-compile time and annotates each

node with a single, integral state number, which encodes all of the information
concerning matches and costs. iburg does the dynamic programming at compile
time and annotates nodes with data equivalent to (M,C). Its “state numbers” are
really pointers to records that hold these data.

Both versions of burg generate an implementation of label that accesses node
fields via client-supplied macros or functions and uses the non-recursive function
state to identify matches:

int label(NODEPTR_TYPE p) {
if (p) {

int l = label(LEFT_CHILD(p));
int r = label(RIGHT_CHILD(p));
return STATE_LABEL(p) = state(OP_LABEL(p), l, r);

} else
return 0;

}

NODEPTR_TYPE is a typedef or macro that defines the data type of nodes, OP_LABEL,
LEFT_CHILD, and RIGHT_CHILD are macros or functions that return, respectively, a
node’s external symbol number, its left child, and its right child. STATE_LABEL is a
macro that accesses a node’s state number field.
state accepts an external symbol number for a node and the state numbers for

the node’s left and right children. It returns the state number to assign to that
node. For unary operators and leaves, it ignores the last one or two arguments,
respectively.

4. IMPLEMENTATION

iburg generates a state function that uses a straightforward implementation of
tree pattern matching [7]. It generates hard code instead of tables. Its “state
numbers” are pointers to state records, which hold vectors of the (M,C) values for
successful matches. The state record for the specification in Figure 2 is

struct state {
int op;
struct state *left, *right;
short cost[6];
short rule[6];

};

iburg also generates integer codes for the non-terminals, which index the cost and
rule vectors:

#define stmt_NT 1
#define disp_NT 2
#define rc_NT 3
#define reg_NT 4
#define con_NT 5

6 ·
By convention, the start non-terminal has value 1.

State records are cleared when allocated, and external rule numbers are positive.
Thus, a non-zero value for p->rule[X] indicates that p’s node matched a rule that
defines non-terminal X .

Figure 4 shows the implementation of state and gives the cases that are con-
tributed by Figure 2’s lines 6, 7, 10, and 11. state allocates and initializes a new
state record and switches on the external symbol number to begin matching. Each
non-leaf case is one or more if statements that test for a match by consulting the
state records of descendants. The switch by itself does all necessary testing for
leaves.

If a match succeeds, the resulting cost is computed and record is called with the
pointer to the state record, the code for the matching non-terminal, the cost, and
the matching external rule number:

void record(struct state *p, int nt, int cost, int eruleno) {
if (cost < p->cost[nt]) {

p->cost[nt] = cost;
p->rule[nt] = eruleno;

}
}

The match is recorded only if its cost is less that previous matches. The elements
of the cost vector are initialized with 32767 to represent infinite cost, so the first
match is always recorded.

The first call to record is for the match itself; the other calls are for chain rules.
For example, the second if statement in the ADDI case tests whether p’s node
matches the pattern in line 10. If it does, the first call to record records that the
node matches a disp. The chain rule in line 9 says that a node matching a disp
also matches a reg with an additional cost of 1, which gives rise to the second
record call. Likewise, the last two calls to record are due to the chain rules in
lines 5 and 13, which say that a node matching a reg also matches a stmt and
an rc, both with an additional cost of 0. In general, there is a call to record for
the transitive closure of all chain rules that reach the non-terminal defined by the
match.

5. IMPROVEMENTS

The generated matcher described in the previous section is practical for many code-
generation applications, and the generator itself is easy to implement. Students have
replicated the version that emits the code shown in Figure 4 in a couple of weeks.
iburg implements, however, several simple improvements that make the generated
matchers smaller and faster. Even with the improvements below, iburg takes only
642 lines of Icon [14].

The short elements of the rule vector can accommodate any external rule num-
ber, but many non-terminals are defined by only a few rules. For example, only
lines 10 and 11 in Figure 2 define disp, so only two bits are needed to record one of
the two positive values. Definitions can be mapped into a compact range of integers
and stored in minimum space in state records as bit fields, e.g.,

struct state {

· 7

int state(int op, int left, int right) {
int c; struct state *l = (struct state *)left,

*r = (struct state *)right, *p;
p = malloc(sizeof *p);
p->op = op; p->left = l; p->right = r;
p->rule[1] = ... = 0; p->cost[1] = ... = 32767;
switch (op) {
case ADDI:

if (l->rule[reg_NT] && r->rule[rc_NT) {
c = l->cost[reg_NT] + r->cost[rc_NT] + 1;
record(p, reg_NT, c, 6);
record(p, rc_NT, c + 0, 13);
record(p, stmt_NT, c + 0, 5);

}
if (l->rule[reg_NT] && r->rule[con_NT]) {

c = l->cost[reg_NT] + r->cost[con_NT] + 0;
record(p, disp_NT, c, 10);
record(p, reg_NT, c + 1, 9);
record(p, rc_NT, c + 1 + 0, 13);
record(p, stmt_NT, c + 1 + 0, 5);

}
break;

case ADDRLP:
c = 0;
record(p, disp_NT, c, 11);
record(p, reg_NT, c + 1, 9);
record(p, rc_NT, c + 1 + 0, 13);
record(p, stmt_NT, c + 1 + 0, 5);
break;

case CVCI:
if (l->op == INDIRC && l->left->rule[disp_NT]) {

c = l->left->cost[disp_NT] + 1;
record(p, reg_NT, c, 7);
record(p, rc_NT, c + 0, 13);
record(p, stmt_NT, c + 0, 5);

}
break;

...
}
return (int)p;

}

Fig. 4. Implementation of state.

8 ·
int op;
struct state *left, *right;
short cost[6];
struct {

unsigned int stmt:2;
unsigned int disp:2;
unsigned int rc:2;
unsigned int reg:3;
unsigned int con:2;

} rule;
};

External rule numbers for matches are retrieved by calling rule with a state number
and a goal non-terminal [13]. iburg generates an implementation of rule that uses
tables to map the integers in the compact representation to external rule numbers,
e.g.,

short decode_disp[] = { 0, 10, 11 };
short decode_rc[] = { 0, 12, 13 };
short decode_stmt[] = { 0, 4, 5 };
short decode_reg[] = { 0, 6, 7, 8, 9 };
short decode_con[] = { 0, 14, 15 };

int rule(int state, int goalnt) {
struct state *p = (struct state *)state;
switch (goalnt) {
case disp_NT: return decode_disp[p->rule.disp];
case rc_NT: return decode_rc[p->rule.rc];
case stmt_NT: return decode_stmt[p->rule.stmt];
case reg_NT: return decode_reg[p->rule.reg];
case con_NT: return decode_con[p->rule.con];
}

}

Packed rule numbers cannot be subscripted, so record and the code that tests for
a match must be changed. This scheme can save much space for large specifications.
For example, the VAX specification has 47 non-terminals and the encoding scheme
reduces the size of its rule vector from 96 to 16 bytes.

Packing rule numbers can also save time: it takes longer to read, write and
decode packed rule numbers, but the smaller structure can be initialized much
faster, with a single structure copy. The original VAX matcher initialized rule
with 47 assignments; a structure copy would have been slower. With packed fields,
47 assignments would be slower yet, but a 16-byte structure copy beats the original
47 assignments by a margin that swamps the other costs of using packed fields.

Initialization costs can be reduced further still: all costs must be set, but only
the rule field for the start symbol needs initialization. The rule fields are read
in only two places: the rule function above, and the tests for a match. The rule
function is called during a top-down tree traversal, which always begins with the
start symbol as the goal non-terminal. If it finds the initializer’s zero rule number,
then the tree failed to match, and no more fields should be examined anyway.

· 9

The match tests require no rule initialization at all. They read the rule fields of
descendants, and if they read garbage, then the descendants failed to match, and
their costs will be infinite, which will prevent recording a false match. With this
improved initializer, packing rule numbers no longer saves time, but it still saves
space, and the time cost is so small that it could not be measured.
record can also be improved. If the cost test in record fails, the tests in the

calls to record that implement its chain rules must fail too, because costs increase
monotonically. These calls can be avoided if the cost test fails. Inlining record
accommodates both this improvement and packed rules. For example, the second
if statement in the ADDI case in Figure 4 becomes

if (l->rule.reg && r->rule.con) {
c = l->cost[reg_NT] + r->cost[con_NT] + 0;
if (c < p->cost[disp_NT]) { /* disp: ADDI(reg,con) */

p->cost[disp_NT] = c;
p->rule.disp = 1;
closure_disp(p, c);

}
}

p->rule.disp is set to 1 because decode_disp above maps 1 to external rule 10.
This code also shows a more compact approach to handling chain rules. For each

non-terminal X that can be reached via chain rules, iburg generates closure_X ,
which records the chain rule match if its cost is better than previous matches and,
if applicable, calls another closure function. For example, the closure function for
disp is

void closure_disp(struct state *p, int c) {
if (c + 1 < p->cost[reg_NT]) { /* reg: disp */

p->cost[reg_NT] = c + 1;
p->rule.reg = 4;
closure_reg(p, c + 1);

}
}

The incoming cost, c, is the cost of matching the right-hand side of the chain rule.
This cost plus the cost of the chain rule itself, e.g., 1 for line 9’s reg: disp, is the
cost of this application of the chain rule, and this sum is passed to the next closure
function. closure_reg handles both chain rules for reg (lines 5 and 13):

void closure_reg(struct state *p, int c) {
if (c + 0 < p->cost[rc_NT]) { /* rc: reg */

p->cost[rc_NT] = c + 0;
p->rule.rc = 2;

}
if (c + 0 < p->cost[stmt_NT]) { /* stmt: reg */

p->cost[stmt_NT] = c + 0;
p->rule.stmt = 2;

}
}

10 ·
The final improvement saves times for leaves, which abound in subject trees

from code generators. Computing and encoding all of the state record data about
matches at compile-compile time is complicated [18]. Leaves, however, always
match and the contents of the state record is easily computed by simulating the
effect of the assignments and closure function calls shown above. The state records
for leaves can thus be allocated and initialized at compile-compile time, e.g., the
ADDRLP case in Figure 4 becomes

case ADDRLP: {
static struct state z = { 295, 0, 0,

{ 0,
1, /* stmt: reg */
0, /* disp: ADDRLP */
1, /* rc: reg */
1, /* reg: disp */
32767,

},{2, /* stmt: reg */
2, /* disp: ADDRLP */
2, /* rc: reg */
4, /* reg: disp */
0,

}};
return (int)&z;
}

The first three values initialize the op, left, and right fields of the state structure.
The two brace-enclosed initializers give the cost and rule values, respectively. The
code at the beginning of state (see Figure 4) that allocates and initializes a state
record is not needed for leaves, so it is protected by a test that excludes leaf ops.

The table below traces the addition of each improvement above. The first column
shows the number of lines of Icon in iburg and helps quantify implementation cost.
The second column shows the number of object bytes in the resulting matcher.
The third column times lcc in a typical cross-compilation for the VAX on a MIPS
processor. The fourth column shows the time spent in the state and rule routines.
All times are in seconds. Specifications for RISC machines would show smaller
improvements.

iburg matcher lcc matcher version
size size time time
566 240140 2.5 .69 original untuned version
580 56304 2.4 .59 inline record, add closure routines
580 56120 2.4 .59 initialize only one element of rule
616 58760 2.2 .39 precompute leaf states
642 66040 2.2 .39 pack rule numbers

Closure routines save so much space because they implement chain rules in one place
rather than in multiple record runs. The initialization improvement could not be
measured in this trial, but it is trivial to implement and it must save something.
On the other hand, packed rule numbers must have cost some time, but it appears
small, and it cuts the size of the state structure by almost half.

· 11

Two proposed improvements proved uneconomical. First, the closure routines
were inlined; measurements showed that the matcher was faster, but it was larger
than even the initial version above. Independently, the closure routines were re-
coded to avoid tail recursion, but no speedup was measured. The recoding replaced
each closure routine with a case in a switch statement, and the switch bound check
added unnecessary overhead, so it is possible that a compiler implementation of tail
recursion could do better, though large speedups seem unlikely.

Much of the processing done by iburg is straightforward. For example, parsing
the input and writing the output account for 181 and 159 lines, respectively, in the
642-line final version. By way of comparison, a new version of iburg written in C
is 950 lines, and a burg processor is 5100 lines of C [18].

6. DISCUSSION

iburg was built to test early versions of what evolved into burg’s specification
language and interface. Initial tests used Twig and a Twig preprocessor, but Twig
produced incorrect matchers for large CISC grammars. The error proved hard to
find, so Twig was abandoned and iburg written. The initial version was completed
in two days and 200 lines of Icon. The final, student-proof version with full burg-
compatible debugging support is 642 lines.

Matchers generated by iburg are slower than those from burg. The table be-
low shows the times for compiling the C programs in the SPEC benchmarks [19]
with two versions of lcc. These times are for running only the compiler proper;
preprocessing, assembly, and linking time are not included.

Benchmark iburg burg
001.gcc 90.2 77.9
008.espresso 28.3 24.6
022.li 8.9 8.0
023.eqntott 5.6 4.9

The compilations were done on an IRIS 4D/220GTX with 32MB running IRIX
3.3.2, and the times are elapsed time in seconds and are the lowest elapsed times
over several runs on a lightly loaded machine. All reported runs achieved at least
96% utilization (i.e., the ratio of times (user + system)/elapsed ≥ 0.96).

The differences in compilation times are due entirely to differences in the per-
formance of the two matchers. Profiling shows that the execution time of iburg’s
rule is nearly identical to burg’s rule. On these inputs, iburg’s matcher accounts
for 8.5–12.4% of the execution time while burg’s accounts for only 1.1–2.0% making
it roughly 6–12 times faster.

Comparable figures for Twig are unavailable because it did not correctly process
large grammars, but before work with Twig was abandoned, a few measurements
were taken. Using a nearly complete VAX grammar, lcc compiled one 2000-line
module in 20.71 seconds using a Twig matcher and 5.35 using a matcher from the
initial iburg; it spent 15.64 seconds in the Twig matcher and 0.85 in the iburg
matcher. Using a partial MIPS grammar, lcc compiled the module in 9.19 seconds
using a Twig matcher and 4.54 using a matcher from the initial iburg; it spent 4.04
seconds in the Twig matcher and 0.16 in the iburg matcher. Both versions of lcc
used a naive emitter that was slowed by complex grammars, which is why the VAX
compiler was so much slower. The figures in this paragraph are useful for comparing

12 ·
Twig with iburg, but the naive emitter makes them useless for comparisons with
anything else.

A disadvantage of BURS matchers is that the costs must be constant because
the dynamic programming is done at compile-compile time. Costs in Twig speci-
fications, however, can involve arbitrary computation and depend on context. For
example, the pattern

ASGNI(disp,CNSTI)

specifies a clear instruction if the constant is 0. Twig’s cost computations can
inspect the subject tree and return a cost of, say, 1 if the constant is 0 and infinity
otherwise.

BURS specifications can handle this kind of context sensitivity with additional
operators that identify the special cases. For example, before calling state, lcc’s
labeling pass changes CNSTI to IOI if the constant is 0. Thus,

ASGNI(disp,IOI)

specifies a clear instruction.
Most context-sensitive cases that arise in code generation, even for CISC ma-

chines, can be handled similarly, perhaps with a few additional rules. For example,
recognizing and using the VAX’s indexed addressing mode takes 12 rules in lcc’s
specification. iburg could easily be extended so that predicates could be specified
and tested during matching, much like BEG’s conditions [7].
iburg can be useful during development. The generated state and label func-

tions are easy to read and to debug. Indeed, they mirror their specification in the
same way that the code for a recursive-descent parser mirrors its LL(1) grammar.
This attribute has made iburg ideal for teaching. It has been used in a course that
previously used Twig, but students prefer iburg. When students make their in-
evitable mistakes with table-driven matcher like Twig’s or burg’s, only inscrutable
numbers from the table are available from the debugger. When they make mis-
takes with iburg, each node explicitly records the matching rules and costs for
each non-terminal, so users can easily compare the matcher’s actual operation with
their expectations.

Acknowledgments

Section 2 borrows from Reference [13], parts of which were written by Robert Henry.
The C version of iburg is available for anonymous ftp in the directory pub from
ftp.cs.princeton.edu.

REFERENCES

1. Aho, A. V., and Corasick, M. J. Efficient string matching: An aid to bibliographic search.
Communications of the ACM 18, 6 (June 1975), 333–340.

2. Aho, A. V., Ganapathi, M., and Tjiang, S. W. K. Code generation using tree matching
and dynamic programming. ACM Transactions on Programming Languages and Systems 11,
4 (Oct. 1989), 491–516.

3. Aho, A. V., and Johnson, S. C. Optimal code generation for expression trees. Journal of
the ACM 23, 3 (July 1976), 488–501.

4. Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and Tools.
Addison Wesley, Reading, MA, 1986.

· 13

5. Balachandran, A., Dhamdhere, D. M., and Biswas, S. Efficient retargetable code gener-
ation using bottom-up tree pattern matching. Journal of Computer Languages 15, 3 (1990),
127–140.

6. Chase, D. R. An improvement to bottom-up tree pattern matching. In Conference Record of
the ACM Symposium on Principles of Programming Languages (Munich, Jan. 1987), pp. 168–
177.

7. Emmelmann, H., Schröer, F.-W., and Landwehr, R. BEG — a generator for efficient
back ends. Proceedings of the SIGPLAN’89 Conference on Programming Language Design
and Implementation, SIGPLAN Notices 24, 7 (July 1989), 227–237.

8. Ferdinand, C., Seidl, H., and Wilhelm, R. Tree automata for code selection. In Code
Generation — Concepts, Tools, Techniques, Proceedings of the International Workshop on
Code Generation, Dagstuhl, Germany (May 1991), R. Giegerich and S. L. Graham, Eds.,
Springer-Verlag, pp. 30–50.

9. Fraser, C. W. A language for writing code generators. Proceedings of the SIGPLAN’89
Conference on Programming Language Design and Implementation, SIGPLAN Notices 24,
7 (July 1989), 238–245.

10. Fraser, C. W., and Hanson, D. R. A code generation interface for ANSI C. Software—
Practice & Experience 21, 9 (Sept. 1991), 963–988.

11. Fraser, C. W., and Hanson, D. R. A retargetable compiler for ANSI C. SIGPLAN Notices
26, 10 (Oct. 1991), 29–43.

12. Fraser, C. W., and Henry, R. R. Hard-coding bottom-up code generation tables to save
time and space. Software—Practice & Experience 21, 1 (Jan. 1991), 1–12.

13. Fraser, C. W., Henry, R. R., and Proebsting, T. A. BURG—Fast optimal instruction
selection and tree parsing. SIGPLAN Notices 27, 4 (Apr. 1992), 68–76.

14. Griswold, R. E., and Griswold, M. T. The Icon Programming Language, second ed.
Prentice Hall, Englewood Cliffs, NJ, 1990.

15. Hoffman, C. M., and O’Donnell, M. J. Pattern matching in trees. Journal of the ACM
29, 1 (Jan. 1982), 68–95.

16. Pelegŕi-Llopart, E. Tree Transformation in Compiler Systems. PhD thesis, University of
California, Berkeley, Berkeley, CA, Dec. 1987.

17. Pelegŕi-Llopart, E., and Graham, S. L. Optimal code generation for expression trees: An
application of BURS theory. In Conference Record of the ACM Symposium on Principles of
Programming Languages (San Diego, CA, Jan. 1988), pp. 294–308.

18. Proebsting, T. A. Simple and efficient BURS table generation. Proceedings of the SIG-
PLAN’92 Conference on Programming Language Design and Implementation, SIGPLAN
Notices 27, 6 (June 1992), 331–340.

19. Standards Performance Evaluation Corp. SPEC Benchmark Suite Release 1.0, Oct.
1989.

Corrigendum. Section 5 notes that the cost tests make it unnecessary to initialize
most rule fields. BEG [7] carried this observation one step further: Tests like the
outer if statement in the improved ADDI case in Section 5 need not test rule fields
at all; the cost tests suffice. Such if statements are necessary only if there are
embedded terminals to test, like the INDIRC in the rule on line 7 of Figure 2. This
improvement has been added to iburg. Trials could not quantify an improvement,
but it probably saves something, and it is easier to read.

